Serveur d'exploration sur les récepteurs immunitaires végétaux

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Endocannabinoid Modulation of Microglial Phenotypes in Neuropathology.

Identifieur interne : 000159 ( Main/Exploration ); précédent : 000158; suivant : 000160

Endocannabinoid Modulation of Microglial Phenotypes in Neuropathology.

Auteurs : Mikiei Tanaka [États-Unis] ; Scott Sackett [États-Unis] ; Yumin Zhang [États-Unis]

Source :

RBID : pubmed:32117037

Abstract

Microglia, the resident immune cells of the central nervous system, mediate brain homeostasis by controlling neuronal proliferation/differentiation and synaptic activity. In response to external signals from neuropathological conditions, homeostatic (M0) microglia can adopt one of two activation states: the classical (M1) activation state, which secretes mediators of the proinflammatory response, and the alternative (M2) activation state, which presumably mediates the resolution of neuroinflammation and tissue repair/remodeling. Since chronic inflammatory activation of microglia is correlated with several neurodegenerative diseases, functional modulation of microglial phenotypes has been considered as a potential therapeutic strategy. The endocannabinoid (eCB) system, composed of cannabinoid receptors and ligands and their metabolic/biosynthetic enzymes, has been shown to activate anti-inflammatory signaling pathways that modulate immune cell functions. Growing evidence has demonstrated that endogenous, synthetic, and plant-derived eCB agonists possess therapeutic effects on several neuropathologies; however, the molecular mechanisms that mediate the anti-inflammatory effects have not yet been identified. Over the last decade, it has been revealed that the eCB system modulates microglial activation and population. In this review, we thoroughly examine recent studies on microglial phenotype modulation by eCB in neuroinflammatory and neurodegenerative disease conditions. We hypothesize that cannabinoid 2 receptor (CB2R) signaling shifts the balance of expression between neuroinflammatory (M1-type) genes, neuroprotective (M2-type) genes, and homeostatic (M0-type) genes toward the latter two gene expressions, by which microglia acquire therapeutic functionality.

DOI: 10.3389/fneur.2020.00087
PubMed: 32117037
PubMed Central: PMC7033501


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Endocannabinoid Modulation of Microglial Phenotypes in Neuropathology.</title>
<author>
<name sortKey="Tanaka, Mikiei" sort="Tanaka, Mikiei" uniqKey="Tanaka M" first="Mikiei" last="Tanaka">Mikiei Tanaka</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Anatomy, Physiology and Genetics, Uniformed Services University Health Sciences, Bethesda, MD, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Anatomy, Physiology and Genetics, Uniformed Services University Health Sciences, Bethesda, MD</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sackett, Scott" sort="Sackett, Scott" uniqKey="Sackett S" first="Scott" last="Sackett">Scott Sackett</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Anatomy, Physiology and Genetics, Uniformed Services University Health Sciences, Bethesda, MD, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Anatomy, Physiology and Genetics, Uniformed Services University Health Sciences, Bethesda, MD</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Yumin" sort="Zhang, Yumin" uniqKey="Zhang Y" first="Yumin" last="Zhang">Yumin Zhang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Anatomy, Physiology and Genetics, Uniformed Services University Health Sciences, Bethesda, MD, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Anatomy, Physiology and Genetics, Uniformed Services University Health Sciences, Bethesda, MD</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32117037</idno>
<idno type="pmid">32117037</idno>
<idno type="doi">10.3389/fneur.2020.00087</idno>
<idno type="pmc">PMC7033501</idno>
<idno type="wicri:Area/Main/Corpus">000199</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000199</idno>
<idno type="wicri:Area/Main/Curation">000199</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000199</idno>
<idno type="wicri:Area/Main/Exploration">000199</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Endocannabinoid Modulation of Microglial Phenotypes in Neuropathology.</title>
<author>
<name sortKey="Tanaka, Mikiei" sort="Tanaka, Mikiei" uniqKey="Tanaka M" first="Mikiei" last="Tanaka">Mikiei Tanaka</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Anatomy, Physiology and Genetics, Uniformed Services University Health Sciences, Bethesda, MD, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Anatomy, Physiology and Genetics, Uniformed Services University Health Sciences, Bethesda, MD</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sackett, Scott" sort="Sackett, Scott" uniqKey="Sackett S" first="Scott" last="Sackett">Scott Sackett</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Anatomy, Physiology and Genetics, Uniformed Services University Health Sciences, Bethesda, MD, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Anatomy, Physiology and Genetics, Uniformed Services University Health Sciences, Bethesda, MD</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Yumin" sort="Zhang, Yumin" uniqKey="Zhang Y" first="Yumin" last="Zhang">Yumin Zhang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Anatomy, Physiology and Genetics, Uniformed Services University Health Sciences, Bethesda, MD, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Anatomy, Physiology and Genetics, Uniformed Services University Health Sciences, Bethesda, MD</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in neurology</title>
<idno type="ISSN">1664-2295</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Microglia, the resident immune cells of the central nervous system, mediate brain homeostasis by controlling neuronal proliferation/differentiation and synaptic activity. In response to external signals from neuropathological conditions, homeostatic (M0) microglia can adopt one of two activation states: the classical (M1) activation state, which secretes mediators of the proinflammatory response, and the alternative (M2) activation state, which presumably mediates the resolution of neuroinflammation and tissue repair/remodeling. Since chronic inflammatory activation of microglia is correlated with several neurodegenerative diseases, functional modulation of microglial phenotypes has been considered as a potential therapeutic strategy. The endocannabinoid (eCB) system, composed of cannabinoid receptors and ligands and their metabolic/biosynthetic enzymes, has been shown to activate anti-inflammatory signaling pathways that modulate immune cell functions. Growing evidence has demonstrated that endogenous, synthetic, and plant-derived eCB agonists possess therapeutic effects on several neuropathologies; however, the molecular mechanisms that mediate the anti-inflammatory effects have not yet been identified. Over the last decade, it has been revealed that the eCB system modulates microglial activation and population. In this review, we thoroughly examine recent studies on microglial phenotype modulation by eCB in neuroinflammatory and neurodegenerative disease conditions. We hypothesize that cannabinoid 2 receptor (CB2R) signaling shifts the balance of expression between neuroinflammatory (M1-type) genes, neuroprotective (M2-type) genes, and homeostatic (M0-type) genes toward the latter two gene expressions, by which microglia acquire therapeutic functionality.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32117037</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-2295</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in neurology</Title>
<ISOAbbreviation>Front Neurol</ISOAbbreviation>
</Journal>
<ArticleTitle>Endocannabinoid Modulation of Microglial Phenotypes in Neuropathology.</ArticleTitle>
<Pagination>
<MedlinePgn>87</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fneur.2020.00087</ELocationID>
<Abstract>
<AbstractText>Microglia, the resident immune cells of the central nervous system, mediate brain homeostasis by controlling neuronal proliferation/differentiation and synaptic activity. In response to external signals from neuropathological conditions, homeostatic (M0) microglia can adopt one of two activation states: the classical (M1) activation state, which secretes mediators of the proinflammatory response, and the alternative (M2) activation state, which presumably mediates the resolution of neuroinflammation and tissue repair/remodeling. Since chronic inflammatory activation of microglia is correlated with several neurodegenerative diseases, functional modulation of microglial phenotypes has been considered as a potential therapeutic strategy. The endocannabinoid (eCB) system, composed of cannabinoid receptors and ligands and their metabolic/biosynthetic enzymes, has been shown to activate anti-inflammatory signaling pathways that modulate immune cell functions. Growing evidence has demonstrated that endogenous, synthetic, and plant-derived eCB agonists possess therapeutic effects on several neuropathologies; however, the molecular mechanisms that mediate the anti-inflammatory effects have not yet been identified. Over the last decade, it has been revealed that the eCB system modulates microglial activation and population. In this review, we thoroughly examine recent studies on microglial phenotype modulation by eCB in neuroinflammatory and neurodegenerative disease conditions. We hypothesize that cannabinoid 2 receptor (CB2R) signaling shifts the balance of expression between neuroinflammatory (M1-type) genes, neuroprotective (M2-type) genes, and homeostatic (M0-type) genes toward the latter two gene expressions, by which microglia acquire therapeutic functionality.</AbstractText>
<CopyrightInformation>Copyright © 2020 Tanaka, Sackett and Zhang.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tanaka</LastName>
<ForeName>Mikiei</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Anatomy, Physiology and Genetics, Uniformed Services University Health Sciences, Bethesda, MD, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sackett</LastName>
<ForeName>Scott</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Anatomy, Physiology and Genetics, Uniformed Services University Health Sciences, Bethesda, MD, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Yumin</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Anatomy, Physiology and Genetics, Uniformed Services University Health Sciences, Bethesda, MD, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>02</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Neurol</MedlineTA>
<NlmUniqueID>101546899</NlmUniqueID>
<ISSNLinking>1664-2295</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">CB2 receptor agonist</Keyword>
<Keyword MajorTopicYN="N">M0/M1/M2 polarization</Keyword>
<Keyword MajorTopicYN="N">alternative activation</Keyword>
<Keyword MajorTopicYN="N">animal disease model</Keyword>
<Keyword MajorTopicYN="N">endocannabinoids</Keyword>
<Keyword MajorTopicYN="N">immunomodulation</Keyword>
<Keyword MajorTopicYN="N">microglia subtype</Keyword>
<Keyword MajorTopicYN="N">neuroinflammation</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>11</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>01</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>3</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>3</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32117037</ArticleId>
<ArticleId IdType="doi">10.3389/fneur.2020.00087</ArticleId>
<ArticleId IdType="pmc">PMC7033501</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Br J Pharmacol. 2016 Feb;173(4):649-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25800044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Neurosci. 2010 Mar 26;11:44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20346144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neuroinflammation. 2018 Mar 1;15(1):64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29495967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurophysiol. 2018 Sep 1;120(3):1307-1317</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29790836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Immunol. 2009 Feb;30(2):91-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19144568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurotrauma. 2013 Apr 1;30(7):565-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23151067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Jul 29;400(6743):452-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10440374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Physiol (Oxf). 2012 Feb;204(2):267-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21418147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Sep 9;333(6048):1456-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21778362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2017 Jun 15;169(7):1276-1290.e17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28602351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Cell Neurosci. 2017 Jan 04;10:294</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28101004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glia. 2018 Jul;66(7):1447-1463</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29484707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Mar 19;140(6):918-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20303880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pharmacol Exp Ther. 2016 Aug;358(2):342-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27194477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2003 Nov 10;163(3):463-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14610053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Immunol. 2014 Oct;26(5):369-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24877594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Life Sci. 2019 Feb 15;219:40-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30620895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 2017 Mar 15;128:1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27890725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Immunol. 2018 Aug;330:5-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29475558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol. 2007 Dec;14(12):1347-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18096503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neuroimmune Pharmacol. 2009 Dec;4(4):389-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19731042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Behav Immun. 2018 Feb;68:224-237</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29079445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Aging Neurosci. 2017 Jun 07;9:175</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28638339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomed Pharmacother. 2018 Jul;103:1720-1726</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29864962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Behav Immun. 2020 Jan;83:180-191</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31604143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Neurol. 2015 Jan;11(1):56-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25385337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Parkinsons Dis. 2013;3(4):493-514</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24275605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2018 Mar 13;19(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29533978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 1992 Jul 1;176(1):287-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1613462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2012 Jun 12;22(6):1138-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22632801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuropharmacology. 2014 Oct;85:427-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24937045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neural Plast. 2015;2015:130639</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26090232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stroke. 2012 Nov;43(11):3063-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22933588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res. 2015 Mar 30;1602:127-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25625355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Behav Immun. 2011 May;25(4):736-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21310228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2012 Dec 5;367(1607):3216-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23108541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Neurobiol. 2015 Aug;131:65-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26067058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2003 Jan;3(1):23-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12511873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2018 Oct;21(10):1359-1369</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30258234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2010 May;11(5):373-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20404851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neuroinflammation. 2016 Oct 4;13(1):259</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27716270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Physiol. 2017 Feb 10;79:541-566</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27813830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurotrauma. 2016 Oct 1;33(19):1732-1750</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26486881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Immunol Ther Exp (Warsz). 2012 Aug;60(4):251-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22710659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neuroinflammation. 2017 Jan 10;14(1):7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28086912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2013 Dec;16(12):1896-905</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24162652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Aging Neurosci. 2017 Jun 28;9:208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28701948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Neurobiol. 2018 Nov;38(8):1529-1537</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30315387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Immunol. 2017 Feb 14;8:112</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28261199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1993 Sep 2;365(6441):61-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7689702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Behav Immun. 2013 Aug;32:70-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23454862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuropathology. 2016 Feb;36(1):39-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26250788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2014 Dec 31;16(1):758-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25561230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Pharmacol. 2004 Nov;66(5):1260-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15272052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2015 Aug 21;464(2):603-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26166819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2016 Jan 18;5:e12345</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26779719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neuroinflammation. 2014 Jun 03;11:98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24889886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2006 Nov 15;177(10):7303-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17082649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Neurobiol. 2017 Feb;42:1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27788368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2019 Jan 25;363(6425):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30679343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Pharm Res. 2019 May;42(5):416-425</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30830660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 1995 Jun 29;50(1):83-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7605349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8774-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26124120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuropharmacology. 2015 Aug;95:424-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25963415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Neurol. 2019 Dec;322:113063</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31518568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Neurosci. 2016 Feb;58(2):193-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26411568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Rev. 2011 Apr;91(2):461-553</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21527731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Dec 15;438(7070):1017-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16355225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuropharmacology. 2017 Jun;119:157-169</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28153531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Neurol. 2010 Apr;6(4):193-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20234358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Handb Exp Pharmacol. 2015;231:1-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26408156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cells. 2019 May 22;8(5):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31121907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2015 Feb 27;458(1):92-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25637536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 Dec 18;258(5090):1946-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1470919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Leukoc Biol. 2017 Jan;101(1):87-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28049142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Jul 25;114(30):E6034-E6043</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28687674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Behav Immun. 2019 Mar;77:110-126</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30582962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Neurosci. 2003 Nov;4(11):873-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14595399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Neurol. 2016 Jan;275 Pt 3:316-327</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26342753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2010 Aug;13(8):951-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20657592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Behav Immun. 2016 Nov;58:118-129</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27261088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10819-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12136125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1994 Dec 15;372(6507):686-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7990962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Feb 19;105(7):2699-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18263732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 2005 Oct;95(2):437-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16086683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurobiol Aging. 2014 Nov;35(11):2603-2616</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24973119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2013 May 24;435(1):76-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23611779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Neurosci. 2011 Jun 15;12(7):388-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21673720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glia. 2003 Dec;44(3):242-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14603465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glia. 2001 Mar 1;33(3):256-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11241743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011 Jan 25;6(1):e15973</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21283568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Rev. 2002 Jun;54(2):161-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12037135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>CNS Drug Rev. 2002 Fall;8(3):309-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12353060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Behav Immun. 2015 Oct;49:233-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26086345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Pharmacol. 2007 Mar;150(6):766-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17279090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2011 Jan;14(1):9-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21187849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2005 Jun;8(6):752-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15895084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1998 Jul 30;248(3):515-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9703957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 2017 Mar 15;595(6):1929-1945</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27104646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stroke. 2012 Jan;43(1):211-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22020035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neuroimmune Pharmacol. 2009 Dec;4(4):399-418</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19655259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Inflammation. 2015 Oct;38(5):1880-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25896633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2013 Jun;13(6):397-411</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23702978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurosci Lett. 2019 Aug 10;707:134286</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31150731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>eNeuro. 2019 Aug 26;6(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31371457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Physiol. 2007;69:483-510</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17305471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1995 Oct 4;215(1):89-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7575630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Eye Res. 2019 May;182:109-124</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30922891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2017 Oct 10;21(2):366-380</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29020624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chin Med. 2018 Mar 20;13:14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29560022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Mar 22;113(12):E1738-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26884166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Med Chem Lett. 2009 Mar 15;19(6):1691-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19230659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Res. 2016 Sep;111:721-730</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27450295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Pharmacol. 2007 Nov;152(5):576-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17704824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neuroimmunol. 2018 Apr 15;317:37-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29501084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Res Perspect. 2015 Aug;3(4):e00159</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26196013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glia. 2010 Jan 15;58(2):135-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19565660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2019 Sep 2;38(17):e101997</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31373067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2011 Oct 25;11(11):775-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22025055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glia. 2012 Sep;60(9):1437-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22653796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Drug Discov. 2018 Sep;17(9):623-639</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30116049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2017 Sep 13;95(6):1246-1265</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28910616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2007 Mar 7;27(10):2596-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17344397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2019 Feb;566(7744):388-392</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30760929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Neurol. 2014 Aug;258:5-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25017883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2017 Jan 03;8:13958</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28045021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 2016 Mar 1;103:1-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26556658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2016 Jul 26;19(8):987-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27459405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Rev. 2010 Dec;62(4):588-631</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21079038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res. 2011 May 16;1390:126-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21406188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscience. 2019 May 1;405:118-136</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30367946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Pharmacol. 2016 Aug 15;785:44-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26632493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1990 Aug 9;346(6284):561-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2165569</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Maryland</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Maryland">
<name sortKey="Tanaka, Mikiei" sort="Tanaka, Mikiei" uniqKey="Tanaka M" first="Mikiei" last="Tanaka">Mikiei Tanaka</name>
</region>
<name sortKey="Sackett, Scott" sort="Sackett, Scott" uniqKey="Sackett S" first="Scott" last="Sackett">Scott Sackett</name>
<name sortKey="Zhang, Yumin" sort="Zhang, Yumin" uniqKey="Zhang Y" first="Yumin" last="Zhang">Yumin Zhang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantImRecepV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000159 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000159 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantImRecepV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32117037
   |texte=   Endocannabinoid Modulation of Microglial Phenotypes in Neuropathology.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32117037" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantImRecepV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:33:18 2020. Site generation: Sat Nov 21 12:33:47 2020